Leveraging Linear Programming for pseudo-Boolean solving

J<u>o Devriendt</u> †, Jan Elffers †, Ambros Gleixner ‡, Jakob Nordström † † KTH Royal Institute of Technology, Sweden ‡ Zuse Institut Berlin, Germany j<u>hmde@kth.se</u>

Three abbreviations

- CP = constraint programming
- PB = pseudo-Boolean
- LP = linear programming

CP demo!

- Pigeonhole problem in IDP
 - http://dtai.cs.kuleuven.be/krr/idp-ide/? src=c01635bf2172be67577f0856684fb3f8
 - Timeout on small problem sizes

CP demo!

- Pigeonhole problem in IDP
 - http://dtai.cs.kuleuven.be/krr/idp-ide/? src=c01635bf2172be67577f0856684fb3f8
 - Timeout on small problem sizes
- Viewed as an integer linear program, specification is *rationally infeasible*
 - polynomially decidable!

CP demo!

- Pigeonhole problem in IDP
 - http://dtai.cs.kuleuven.be/krr/idp-ide/? src=c01635bf2172be67577f0856684fb3f8
 - Timeout on small problem sizes
- Viewed as an integer linear program, specification is *rationally infeasible*
 - polynomially decidable!
- Why is IDP's performance this bad?

- IDP uses MiniSatID as backend CP solver
- MiniSatID uses *lazy clause generation* algorithm

- IDP uses MiniSatID as backend CP solver
- MiniSatID uses *lazy clause generation* algorithm
 - explains propagations through clauses

- IDP uses MiniSatID as backend CP solver
- MiniSatID uses *lazy clause generation* algorithm
 - explains propagations through clauses
 - Iearns clause from conflict (*no-good*)

- IDP uses MiniSatID as backend CP solver
- MiniSatID uses *lazy clause generation* algorithm
 - explains propagations through clauses
 - Iearns clause from conflict (*no-good*)
 - builds resolution proofs

- IDP uses MiniSatID as backend CP solver
- MiniSatID uses *lazy clause generation* algorithm
 - explains propagations through clauses
 - Iearns clause from conflict (no-good)
 - builds resolution proofs
- Resolution is infamously bad at pigeonhole [1]

- Generalization of resolution
- Great for rationally infeasible problems [2]
 - e.g. pigeonhole

- Generalization of resolution
- Great for rationally infeasible problems [2]
 - e.g. pigeonhole
- Used by many *pseudo-Boolean* solvers
 - decide feasibility of 0-1 integer linear programs
 - e.g. RoundingSat, Sat4J
 - learn *linear inequality* from conflict

- Generalization of resolution
- Great for rationally infeasible problems [2]
 - e.g. pigeonhole
- Used by many *pseudo-Boolean* solvers
 - decide feasibility of 0-1 integer linear programs
 - e.g. RoundingSat, Sat4J
 - learn *linear inequality* from conflict
- RoundingSat has no problem with pigeonhole

- Generalization of resolution
- Great for rationally infeasible problems [2]
 - e.g. pigeonhole
- Used by many *pseudo-Boolean* solvers
 - decide feasibility of 0-1 integer linear programs
 - e.g. RoundingSat, Sat4J
 - learn *linear inequality* from conflict
- RoundingSat has no problem with pigeonhole
- RoundingSat fails on several other rationally infeasible problems

Summary so far

- 1. CP and PB solvers struggle on rational infeasibility
- 2. Stronger underlying proof system helps on some, but not all problems
- 3. Rational feasibility is polynomially decidable [3]

Summary so far

- 1. CP and PB solvers struggle on rational infeasibility
- 2. Stronger underlying proof system helps on some, but not all problems
- 3. Rational feasibility is polynomially decidable [3]

How to exploit rational infeasibility during search?

Propagation

Linear Programming (LP) solvers

- In:
 - conjunction of linear constraints
 - variable bounds
 - objective function

Linear Programming (LP) solvers

• In:

- conjunction of linear constraints
- variable bounds
- objective function
- Out: either
 - SAT: optimal rational solution
 - UNSAT: Farkas multipliers
 - defines violated linear combination of input constraints

Linear Programming (LP) solvers

• In:

- conjunction of linear constraints
- variable bounds
- objective function
- Out: either
 - SAT: optimal rational solution
 - UNSAT: Farkas multipliers
 - defines violated linear combination of input constraints

with LP solver call

Two technical problems

- LP solvers are relatively slow
 - Limit calls to LP solver
 - Limit LP solver running time

Two technical problems

- LP solvers are relatively slow
 - Limit calls to LP solver
 - Limit LP solver running time
- LP solvers use inexact floating point arithmetic
 - Independently calculate Farkas constraint with exact multiple precision
 - Verify falsifiedness of Farkas constraint

Working implementation with PB solver

• Trivial conversion between PB and LP constraints

Working implementation with PB solver

- Trivial conversion between PB and LP constraints
- PB solver RoundingSat

Working implementation with PB solver

- Trivial conversion between PB and LP constraints
- PB solver RoundingSat
- LP solver SoPlex

Experiments!

- 5 solver configurations
 - RoundingSat
 - RoundingSat+SoPlex
 - SCIP
 - Sat4J
 - Sat4J-CP
- 3000s on 16GiB machines
- 4 benchmark families:
 - PB12
 - PB16
 - MIPLIB
 - PROOF

Experiments!

Experiments!

Experiments!

Experiments!

Experiments indicate

- RoundingSat+SoPlex ≥ RoundingSat
 - small LP overhead at worst, huge speedups at best

Experiments indicate

- RoundingSat+SoPlex ≥ RoundingSat
 - small LP overhead at worst, huge speedups at best
- Only on MIPLIB, SCIP > RoundingSat+SoPlex

Experiments indicate

- RoundingSat+SoPlex ≥ RoundingSat
 - small LP overhead at worst, huge speedups at best
- Only on MIPLIB, SCIP > RoundingSat+SoPlex
- SoPlex does not like PB12

• Add learnt constraints to LP solver *

- Add learnt constraints to LP solver *
- Use LP cuts as learnt constraints

- Add learnt constraints to LP solver *
- Use LP cuts as learnt constraints
- Exploit rational solutions to constraints

- Add learnt constraints to LP solver *
- Use LP cuts as learnt constraints
- Exploit rational solutions to constraints
- Improve LP solving performance on PB benchmarks

- Add learnt constraints to LP solver *
- Use LP cuts as learnt constraints
- Exploit rational solutions to constraints
- Improve LP solving performance on PB benchmarks
- Optimization!

• *Linearizations* of CP models exist [4]

- *Linearizations* of CP models exist [4]
- Farkas constraint can be *rounded* to clausal no-good

- *Linearizations* of CP models exist [4]
- Farkas constraint can be *rounded* to clausal no-good
- No theoretical obstacles for our approach to work for lazy clause generation CP

- *Linearizations* of CP models exist [4]
- Farkas constraint can be *rounded* to clausal no-good
- No theoretical obstacles for our approach to work for lazy clause generation CP

Questions to NordConsNet:

- would LP integration be helpful for CP solvers?
- does any CP solver do this already?

• Use LP solver to tackle on-the-fly rational infeasibility

- Use LP solver to tackle on-the-fly rational infeasibility
- Implemented sound integration of LP solver in PB solver

- Use LP solver to tackle on-the-fly rational infeasibility
- Implemented sound integration of LP solver in PB solver
- Experiments indicate small LP overhead at worst, huge speedups at best

- Use LP solver to tackle on-the-fly rational infeasibility
- Implemented sound integration of LP solver in PB solver
- Experiments indicate small LP overhead at worst, huge speedups at best
- In theory, technique can be lifted to CP

- Use LP solver to tackle on-the-fly rational infeasibility
- Implemented sound integration of LP solver in PB solver
- Experiments indicate small LP overhead at worst, huge speedups at best
- In theory, technique can be lifted to CP

Thanks for your attention! Questions?

References

[1] The intractability of resolution - 1985 - Haken

- [2] Über die Theorie der Einfachen Ungleichungen 1902- Farkas
- [3] A polynomial algorithm for linear programming 1979 - Khachiyan
- [4] The Many Roads Leading to Rome: Solving Zinc Models by Various Solvers - 2008 - Becket e.a.