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Three abbreviationsThree abbreviations

CP = constraint programming
PB = pseudo-Boolean
LP = linear programming
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CP demo!CP demo!

Pigeonhole problem in IDP
http://dtai.cs.kuleuven.be/krr/idp-ide/?
src=c01635bf2172be67577f0856684fb3f8
Timeout on small problem sizes
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CP demo!CP demo!

Pigeonhole problem in IDP
http://dtai.cs.kuleuven.be/krr/idp-ide/?
src=c01635bf2172be67577f0856684fb3f8
Timeout on small problem sizes

Viewed as an integer linear program, 
specification is rationally infeasible

polynomially decidable!
Why is IDP's performance this bad?
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Explanation:Explanation:  
resolutionresolution  

is bad at pigeonholeis bad at pigeonhole

IDP uses MiniSatID as backend CP solver
MiniSatID uses lazy clause generation algorithm

IDP MiniSatID Lazy clause
generation
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Explanation:Explanation:  
resolutionresolution  

is bad at pigeonholeis bad at pigeonhole

IDP uses MiniSatID as backend CP solver
MiniSatID uses lazy clause generation algorithm

explains propagations through clauses
learns clause from conflict (no-good)
builds resolution proofs

Resolution is infamously bad at pigeonhole [1]

IDP ResolutionMiniSatID Lazy clause
generation
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Potential solution:Potential solution:  
use use cutting-planescutting-planes proof system proof system

Generalization of resolution
Great for rationally infeasible problems [2]

e.g. pigeonhole
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Potential solution:Potential solution:  
use use cutting-planescutting-planes proof system proof system

Generalization of resolution
Great for rationally infeasible problems [2]

e.g. pigeonhole
Used by many pseudo-Boolean solvers

decide feasibility of 0-1 integer linear programs
e.g. RoundingSat, Sat4J
learn linear inequality from conflict

RoundingSat has no problem with pigeonhole 
 
RoundingSat fails on several other rationally
infeasible problems
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Summary so farSummary so far

1. CP and PB solvers struggle on rational infeasibility
2. Stronger underlying proof system helps on some, but not all

problems
3. Rational feasibility is polynomially decidable [3]
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Summary so farSummary so far

1. CP and PB solvers struggle on rational infeasibility
2. Stronger underlying proof system helps on some, but not all

problems
3. Rational feasibility is polynomially decidable [3]

How to exploit rationalHow to exploit rational
infeasibility during search?infeasibility during search?
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Modern search loopModern search loop

Propagation
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Linear Programming (LP) solversLinear Programming (LP) solvers
In:

conjunction of linear constraints
variable bounds
objective function
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Modern search loopModern search loop
with LP solver call

Propagation Conflict?

Learn (Farkas) constraint

Backjump

Decide unassigned
variable

Query LP solver *

Extract Farkas
multipliers
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LP solvers are relatively slow
Limit calls to LP solver
Limit LP solver running time

Two technical problemsTwo technical problems
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LP solvers are relatively slow
Limit calls to LP solver
Limit LP solver running time

LP solvers use inexact floating point arithmetic
Independently calculate Farkas constraint
with exact multiple precision
Verify falsifiedness of Farkas constraint

Two technical problemsTwo technical problems
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Trivial conversion between PB and LP constraints

Working implementationWorking implementation  
with PB solverwith PB solver
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Trivial conversion between PB and LP constraints
PB solver RoundingSat
LP solver SoPlex

Working implementationWorking implementation  
with PB solverwith PB solver
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Experiments!Experiments!

5 solver configurations
RoundingSat
RoundingSat+SoPlex
SCIP
Sat4J
Sat4J-CP

3000s on 16GiB machines
4 benchmark families:

PB12
PB16
MIPLIB
PROOF
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Experiments!Experiments!
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Experiments indicateExperiments indicate

RoundingSat+SoPlex ≥ RoundingSat
small LP overhead at worst, huge speedups at best
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Experiments indicateExperiments indicate

RoundingSat+SoPlex ≥ RoundingSat
small LP overhead at worst, huge speedups at best

Only on MIPLIB, SCIP > RoundingSat+SoPlex
SoPlex does not like PB12
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Future workFuture work

Add learnt constraints to LP solver *
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Future workFuture work

Add learnt constraints to LP solver *
Use LP cuts as learnt constraints
Exploit rational solutions to constraints
Improve LP solving performance on PB benchmarks
Optimization!
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How about the CP setting?How about the CP setting?
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How about the CP setting?How about the CP setting?

Linearizations of CP models exist [4]
Farkas constraint can be rounded to clausal no-good
No theoretical obstacles for our approach to work for lazy clause
generation CP

Questions to NordConsNet:Questions to NordConsNet:

would LP integration be helpful for CP solvers?would LP integration be helpful for CP solvers?

does any CP solver do this already?does any CP solver do this already?
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ConclusionConclusion

Use LP solver to tackle on-the-fly rational infeasibility
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ConclusionConclusion

Use LP solver to tackle on-the-fly rational infeasibility
Implemented sound integration of LP solver in PB
solver
Experiments indicate small LP overhead at worst,
huge speedups at best
In theory, technique can be lifted to CP

Thanks for your attention!Thanks for your attention!
Questions?Questions? 21
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