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Three abbreviations

e CP = constraint programming
e PB = pseudo-Boolean
e | P =linear programming
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CP demo!

e Pigeonhole problem in IDP

= http://dtai.cs.kuleuven.be/krr/idp-ide/?
src=c01635bf2172be67577tf0856684fb3f8

= Timeout on small problem sizes

e Viewed as an integer linear program,
specification is rationally infeasible

= polynomially decidable!
e Why is IDP's performance this bad?
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Explanation:
resolution
Is bad at pigeonhole

e |DP uses MiniSatID as backend CP solver
e MiniSatlD uses lazy clause generation algorithm

= explains propagations through clauses
= |earns clause from conflict (no-good)
= pbuilds resolution proofs

e Resolution is infamously bad at pigeonhole [1]

[10P] <= [MinisatiD] «—> ;a;ye‘;;aty;f —
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e Generalization of resolution
e Great for rationally infeasible problems [2]

= e.g. pigeonhole
e Used by many pseudo-Boolean solvers

= decide feasibility of 0-1 integer linear programs
= e.g. RoundingSat, Sat4]
m |earn linear inequality from conflict

e RoundingSat has no problem with pigeonhole ©

e RoundingSat fails on several other rationally
infeasible problems
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2. Stronger underlying proof system helps on some, but not all
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3. Rational feasibility is polynomially decidable [3]

How to exploit rational
Infeasibility during search?
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Linear Programming (LP) solvers

e |N:

® conjunction of linear constraints
= variable bounds

—-=—objective-function—————
e Qut: either minimize ctx
—=—SAT-optimatrationat-sotution— subject to Ax <b
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o defines violated linear
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Modern search loop

with LP solver call
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Two technical problems

e LP solvers are relatively slow

= |imit calls to LP solver
= Limit LP solver running time
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Two technical problems

e LP solvers are relatively slow

= |imit calls to LP solver
= Limit LP solver running time

e |P solvers use inexact floating point arithmetic

= |ndependently calculate Farkas constraint
with exact multiple precision
= Verify falsifiedness of Farkas constraint
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Working implementation
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e Trivial conversion between PB and LP constraints
e PB solver RoundingSat
e | P solver SoPlex

12



Experiments!

e 5 solver configurations

= RoundingSat

= RoundingSat+SoPlex
SCIP

Sat4]

Sat4J-CP

e 3000s on 16GiB machines
e 4 benchmark families:

= PB12
= PB16
= MIPLIB
= PROOF
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Number of solved instances

Experiments!
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Number of solved instances

Experiments!
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Experiments indicate

e RoundingSat+SoPlex > RoundingSat
= small LP overhead at worst, huge speedups at best
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Experiments indicate

e RoundingSat+SoPlex > RoundingSat
= small LP overhead at worst, huge speedups at best

e Only on MIPLIB, SCIP > RoundingSat+SoPlex
e SoPlex does not like PB12
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Future work

e Add learnt constraints to LP solver *
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Future work

Add learnt constraints to LP solver *
Use LP cuts as learnt constraints
Exploit rational solutions to constraints

Improve LP solving performance on PB benchmarks
Optimization!
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How about the CP setting?

e [inearizations of CP models exist [4]
e Farkas constraint can be rounded to clausal no-good

e No theoretical obstacles for our approach to work for lazy clause
generation CP

Questions to NordConsNet:

 would LP integration be helpful for CP solvers?

e does any CP solver do this already?
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Conclusion

Use LP solver to tackle on-the-fly rational infeasibility
Implemented sound integration of LP solver in PB
solver

Experiments indicate small LP overhead at worst,
huge speedups at best

In theory, technique can be lifted to CP

Thanks for your attention!
Questions?
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