Leveraging

Linear Programming for
pseudo-Boolean solving

Jo Devriendt T, Jan Elffers T, Ambros Gleixner ¥, Jakob Nordstrom t
T KTH Royal Institute of Technology, Sweden

¥ Zuse Institut Berlin, Germany
jpmde@kth.se

Three abbreviations

e CP = constraint programming
e PB = pseudo-Boolean
e | P =linear programming

CP demo!

e Pigeonhole problem in IDP

= http://dtai.cs.kuleuven.be/krr/idp-ide/?
src=c01635bf2172be67577t0856684fb3f8
= Timeout on small problem sizes

CP demo!

e Pigeonhole problem in IDP

= http://dtai.cs.kuleuven.be/krr/idp-ide/?
src=c01635bf2172be67577t0856684fb3f8
= Timeout on small problem sizes

e Viewed as an integer linear program,
specification is rationally infeasible

= polynomially decidable!

CP demo!

e Pigeonhole problem in IDP

= http://dtai.cs.kuleuven.be/krr/idp-ide/?
src=c01635bf2172be67577tf0856684fb3f8

= Timeout on small problem sizes

e Viewed as an integer linear program,
specification is rationally infeasible

= polynomially decidable!
e Why is IDP's performance this bad?

Explanation:
resolution
Is bad at pigeonhole

e |DP uses MiniSatID as backend CP solver
e MiniSatlD uses lazy clause generation algorithm

o — i — [

generation

Explanation:
resolution
Is bad at pigeonhole

e |DP uses MiniSatID as backend CP solver
e MiniSatlD uses lazy clause generation algorithm

= explains propagations through clauses

— Lazy clause
[IDP] <= [MinisatiD| «—>

Explanation:
resolution
Is bad at pigeonhole

e |DP uses MiniSatID as backend CP solver
e MiniSatlD uses lazy clause generation algorithm

= explains propagations through clauses
= |earns clause from conflict (no-good)

— Lazy clause
[IDP] <= [MinisatiD| «—>

Explanation:
resolution
Is bad at pigeonhole

e |DP uses MiniSatID as backend CP solver
e MiniSatlD uses lazy clause generation algorithm

= explains propagations through clauses
= |earns clause from conflict (no-good)
= pbuilds resolution proofs

[10P] <= [MinisatiD] «—> ;a;ye‘;;aty;f —

4

Explanation:
resolution
Is bad at pigeonhole

e |DP uses MiniSatID as backend CP solver
e MiniSatlD uses lazy clause generation algorithm

= explains propagations through clauses
= |earns clause from conflict (no-good)
= pbuilds resolution proofs

e Resolution is infamously bad at pigeonhole [1]

[10P] <= [MinisatiD] «—> ;a;ye‘;;aty;f —

4

Potential solution:
use cutting-planes proof system

e Generalization of resolution
e Great for rationally infeasible problems [2]

= e.g. pigeonhole

Potential solution:
use cutting-planes proof system

e Generalization of resolution
e Great for rationally infeasible problems [2]

= e.g. pigeonhole
e Used by many pseudo-Boolean solvers

= decide feasibility of 0-1 integer linear programs
= e.g. RoundingSat, Sat4]
m |earn linear inequality from conflict

Potential solution:
use cutting-planes proof system

e Generalization of resolution
e Great for rationally infeasible problems [2]

= e.g. pigeonhole
e Used by many pseudo-Boolean solvers

= decide feasibility of 0-1 integer linear programs
= e.g. RoundingSat, Sat4]
m |earn linear inequality from conflict

e RoundingSat has no problem with pigeonhole ©

Potential solution:
use cutting-planes proof system

e Generalization of resolution
e Great for rationally infeasible problems [2]

= e.g. pigeonhole
e Used by many pseudo-Boolean solvers

= decide feasibility of 0-1 integer linear programs
= e.g. RoundingSat, Sat4]
m |earn linear inequality from conflict

e RoundingSat has no problem with pigeonhole ©

e RoundingSat fails on several other rationally
infeasible problems

Summary so far

1. CP and PB solvers struggle on rational infeasibility

2. Stronger underlying proof system helps on some, but not all
problems

3. Rational feasibility is polynomially decidable [3]

Summary so far

1. CP and PB solvers struggle on rational infeasibility

2. Stronger underlying proof system helps on some, but not all
problems

3. Rational feasibility is polynomially decidable [3]

How to exploit rational
Infeasibility during search?

Modern search loop

Modern search loop

——— Conflict?

Modern search loop

Decide una55|gned
I varlable
4 no
——— Conflict?

Modern search loop

Decide unassigned

I variable

*I
)
O

Learn constraint

N

o
<=,
< a
D
Vp)]

Modern search loop

Decide unassigned
I variable

4 no
e CONFliCt?
¥ vyes

Modern search loop

with rational feasibility oracle

Decide unassigned
variable

Rational infeasibility?

Query oracle

4 no

—_— Conﬂict7
yes

BackJump

Modern search loop

with rational feasibility oracle

Decide unassigned
variable

no
Rational infeasibility?

Query oracle

4 no

—_— Conﬂict7
yes

BackJump

Modern search loop

with rational feasibility oracle

Decide unassigned
variable

Nno

Rational infeasibility?
yes

Query oracle

4 no

—_— Conﬂict7
yes

BackJump

Modern search loop

with rational feasibility oracle

Decide unassigned
variable

no
Rational infeasibility?

Quer

4 no

—_— Conﬂict7
yes

BackJump

yes

Linear Programming (LP) solvers

e |N:

® conjunction of linear constraints
= variable bounds
= objective function

minimize clx
subject to Ax <b
‘y and x>0

Linear Programming (LP) solvers

e |N:

® conjunction of linear constraints
= variable bounds
= objective function

e Qut: either minimize ctx
= SAT: optimal rational solution subject to Ax <b
= UNSAT: Farkas multipliers ‘y and x>0

o defines violated linear
combination of input
constraints

Linear Programming (LP) solvers

e |N:

® conjunction of linear constraints
= variable bounds

—-=—objective-function—————
e Qut: either minimize ctx
—=—SAT-optimatrationat-sotution— subject to Ax <b
= UNSAT: Farkas multipliers ‘y and x>0

o defines violated linear
combination of input
constraints

Modern search loop

with LP solver call

Decide unassigned
variable

Nno

. . o Extract Farkas
Rational infeasibility?

yes multipliers

Query LP solver *

4 no

—_— Conﬂict7
yes

BackJump o

Two technical problems

e LP solvers are relatively slow

= |imit calls to LP solver
= Limit LP solver running time

11

Two technical problems

e LP solvers are relatively slow

= |imit calls to LP solver
= Limit LP solver running time

e |P solvers use inexact floating point arithmetic

= |ndependently calculate Farkas constraint
with exact multiple precision
= Verify falsifiedness of Farkas constraint

11

Working implementation
with PB solver

e Trivial conversion between PB and LP constraints

Working implementation
with PB solver

e Trivial conversion between PB and LP constraints
e PB solver RoundingSat

12

Working implementation
with PB solver

e Trivial conversion between PB and LP constraints
e PB solver RoundingSat
e | P solver SoPlex

12

Experiments!

e 5 solver configurations

= RoundingSat

= RoundingSat+SoPlex
SCIP

Sat4]

Sat4J-CP

e 3000s on 16GiB machines
e 4 benchmark families:

= PB12
= PB16
= MIPLIB
= PROOF

13

Number of solved instances

Experiments!

PB12
120 A :
— == RoundingSat
RoundingSat+ SoPlex
..... SC”D
100 - —— Sat4J
—+— Sat4JCP
80 A
60 A
40 A
"
,f
,J
20 A A
L
‘ --“’,
0 ! IIIII—I- ! IIIIII-'-I-—I L | ! IIIIII=I-I7 ! LR |
1072 10~ 10° 10" 102 103

Timeout limit (s)

14

Number of solved instances

Experiments!

PB16
=== RoundingSat
700 A RoundingSat+ SoPlex
..... SC'P
—— Sat4J o
600 1 —— sat44cP =T
500 -
400 A
300 -
200 -
100 A
0 LR | ! LI | ! LR | ! LR | ! L |
1072 1071 109 10" 102 103

Timeout limit (s)

15

Number of solved instances

Experiments!

MIPLIB
=== RoundingSat
500 A RoundingSat+ SoPlex
..... SC”D
— Sat4J
—+— Sat4JCP
400 A
300 -
200 -
100 A
0 . ! IIIII:'I ! LR | ! LR | ! LR | ! LR |
1072 101 100 10" 102 103

Timeout limit (s)

Number of solved instances

Experiments!

PROOF

12009 __. RoundingSat
—-= RoundingSat+ SoPlex
..... SCIP
10009 —— Sat4y T /
—+— Sat44CcP . o ‘/‘_,-
o ./.rf—
-"‘ ¢/
----- s
800 - - Vel
/'/ 7
DH' ”
J s
600 - - -
H
AT
400 - H R
P

200 A
"
0 ' R | ' L ' L ' L R
1072 1071 109 10 102 103

Timeout limit (s)

17

Experiments indicate

e RoundingSat+SoPlex > RoundingSat
= small LP overhead at worst, huge speedups at best

18

Experiments indicate

e RoundingSat+SoPlex > RoundingSat
= small LP overhead at worst, huge speedups at best
e Only on MIPLIB, SCIP > RoundingSat+SoPlex

18

Experiments indicate

e RoundingSat+SoPlex > RoundingSat
= small LP overhead at worst, huge speedups at best

e Only on MIPLIB, SCIP > RoundingSat+SoPlex
e SoPlex does not like PB12

18

Future work

e Add learnt constraints to LP solver *

19

Future work

e Add learnt constraints to LP solver *
e Use LP cuts as learnt constraints

19

Future work

e Add learnt constraints to LP solver *
e Use LP cuts as learnt constraints
e Exploit rational solutions to constraints

19

Future work

Add learnt constraints to LP solver *

Use LP cuts as learnt constraints

Exploit rational solutions to constraints

Improve LP solving performance on PB benchmarks

19

Future work

Add learnt constraints to LP solver *
Use LP cuts as learnt constraints
Exploit rational solutions to constraints

Improve LP solving performance on PB benchmarks
Optimization!

19

How about the CP setting?

How about the CP setting?

e [inearizations of CP models exist [4]

How about the CP setting?

e [inearizations of CP models exist [4]
e Farkas constraint can be rounded to clausal no-good

20

How about the CP setting?

e [inearizations of CP models exist [4]
e Farkas constraint can be rounded to clausal no-good

e No theoretical obstacles for our approach to work for lazy clause
generation CP

20

How about the CP setting?

e [inearizations of CP models exist [4]
e Farkas constraint can be rounded to clausal no-good

e No theoretical obstacles for our approach to work for lazy clause
generation CP

Questions to NordConsNet:

 would LP integration be helpful for CP solvers?

e does any CP solver do this already?

20

Conclusion

e Use LP solver to tackle on-the-fly rational infeasibility

21

Conclusion

e Use LP solver to tackle on-the-fly rational infeasibility
e |mplemented sound integration of LP solver in PB
solver

21

Conclusion

e Use LP solver to tackle on-the-fly rational infeasibility

e |mplemented sound integration of LP solver in PB
solver

e Experiments indicate small LP overhead at worst,
huge speedups at best

21

Conclusion

Use LP solver to tackle on-the-fly rational infeasibility
Implemented sound integration of LP solver in PB
solver

Experiments indicate small LP overhead at worst,
huge speedups at best

In theory, technique can be lifted to CP

21

Conclusion

Use LP solver to tackle on-the-fly rational infeasibility
Implemented sound integration of LP solver in PB
solver

Experiments indicate small LP overhead at worst,
huge speedups at best

In theory, technique can be lifted to CP

Thanks for your attention!
Questions?

21

References

[1] The intractability of resolution - 1985 - Haken

[2] Uber die Theorie der Einfachen Ungleichungen - 1902
- Farkas

[3] A polynomial algorithm for linear programming - 1979
- Khachiyan

[4] The Many Roads Leading to Rome: Solving Zinc
Models by Various Solvers - 2008 - Becket e.a.

22

