Constraint Acquisition

Nadjib Lazaar

U. Montpellier, France LIRMM - CNRS - COCONUT team

CNIS

21-05-19 NordConsNet'19 - SIMIULA- Oslo

lazaar@lirmm.fr

- Question: How does the user write down the constraints of a problem?
- Limitations: modelling constraint networks require a fair expertise [Freuder99, Frisch et al.05, Smith06]
- Need: Simple way to build constraint model → Modeller-assistant

- Question: How does the user write down the constraints of a problem?
- Limitations: modelling constraint networks require a fair expertise [Freuder99, Frisch et al.05, Smith06]
- Need: Simple way to build constraint model → Modeller-assistant
- How: In a Machine Learning way (passive/active, offline/online, by reinforcement...)

- Question: How does the user write down the constraints of a problem?
- Limitations: modelling constraint networks require a fair expertise [Freuder99, Frisch et al.05, Smith06]
- Need: Simple way to build constraint model → Modeller-assistant
- How: In a Machine Learning way (passive/active, offline/online, by reinforcement...)

Acquisition using standard ML

- Empirical Model Learning [Lombardi and Milano, AIJ17]
 - Extracting an Empirical Model using Neural Networks and Decision Trees
 - Empirical Model in terms of variables/constraints
- Model Agnostic Solution of CSPs via Deep Learning: A preliminary [Galassi et al., CPAIOR18]
- Study Boundary estimation for constraint optimization problem [Spieker and Gotlieb, ISMP18]
 - Learning boundaries for objective variables
 - Based on supervised learning (data curation, regression models)

Version Space Learning (Overview) [Mitchell82]

- A Let $X=x_1,..,x_n$ a set of attributes of domains $D=D_1,..,D_n$
- A concept is a Boolean function $f: X \to \{0, 1\}$
 - **7** $f(x_i)=0 \implies x_i$ is a negative instance
 - **7** $f(x_i)=1 \Rightarrow x_i$ is a positive instance

Given a set of hypothesis H, any subset of H represents a version space

A concept to learn is the set of positive instances that can be represented by a version space

Version Space Learning (Overview) [Mitchell82]

Most specific concept to learn:

$$f: (\forall x_i \in E^+ : f(x_i) = 1) \land (\forall x_i \in E^- : f(x_i) = 0)$$

$$\underbrace{f \equiv h_2 \wedge h_6 \wedge h_9}$$

Constraint Acquisition as Version Space Learning

Constraint Acquisition Problem

Inputs:

- オ (X,D): Vocabulary
- **Γ**: Constraint language
 - → B: Bias (constraints/hypothesis)
- **7** C_T : Target Network (concept to learn)
- Output:
- **\neg** C_L: Learned network such that:

Example

- $\Gamma = \{<,=\}$
- $B = \{x_i < x_j, x_i = x_j, \forall i, j\}$
- $C_T = \{x_1 = x_3, x_1 < x_2\}$
- $C_L = \{x_1 = x_3, x_3 < x_2\}$

Constraint Acquisition Problem

- Convergence Problem:
 - **7** C_L agrees with E
 - **7** For any other network' C' ⊆ B agreeing with E, we have:

$$sol(C') = sol(C_L)$$

coNP-complete [Constraint Acquisition, AIJ17]

Convergence / Collapse states

Convergence / Collapse states

Acquisition using membership queries

CONACQ [Bessiere et al. AIJ17]

- SAT-Based constraint acquisition
- Bidirectional search using Membership queries
- Conacq1.0 (passive learning)
- Conacq2.0 (active learning)

$$\mathcal{K} = \left(\neg x_1 \land \neg x_2 \land \neg x_3 \right) \bigwedge \left(x_4 \lor x_5 \lor x_6 \lor x_7 \right) \dots$$

Non-learnability using Membership queries [Constraint Acquisition, AIJ17]

Acquisition using complex queries

Matchmaker agents [Freuder and Wallace wAAAI97]

Argument-Based CONACQ [Friedrich et al.09]

✓ ILP-Based Acquisition [Lallouet et al. 10]

Structured problem acquisition

ModelSeeker [Beldiceanu and Simonis, CP11'12]

- A passive learning
- Based on global constraint catalogue (≈1000)
- Buttom-up search
- ModelSeeker learns constraints underlying the scheduling of the Bundesliga (the German Football Liga) from a single example schedule.

2	4	9			3			
	8			1	2	4		
						9		
						7	2	4
	1						3	
3	9	4						
		<mark>8</mark> 6					8	
		6	4	5			9	
			1			8	6	5

QUACQ [Bessiere et al. IJCAI13]

- Active learning approach
- Bidirectional search
 - But it can be top-down search if no positive example
- Based on partial queries to elucidate the scope of the constraint to learn
- Learnability using partial queries

Membership Queries

ask(2, 8, 4, 2, 6, 5, 1, 6)

ask(2, 8, 4, 2, 6, 5, 1, 6) = No

ask(2, 8, 4, 2, -, -, -, -) = No

ask(2, 8, -, -, -, -, -) = Yes

ask(2, 8, 4, -, -, -, -, -) = No

Algorithm 1: QUACQ: Acquiring a constraint network C_T with partial queries 1 $C_L \leftarrow \emptyset$; 2 while *true* do if $sol(C_L) = \emptyset$ then return "collapse"; 3 choose e in D^X accepted by C_L and rejected by B; 4 if e = nil then return "convergence on C_L "; 5 if ASK(e) = yes then $B \leftarrow B \setminus \kappa_B(e)$; 6 else 7 $c \leftarrow \text{FindC}(e, \text{FindScope}(e, \emptyset, X, \text{false}));$ 8 if c = nil then return "collapse"; 9 else $C_L \leftarrow C_L \cup \{c\};$ 10

Complexity of QUACQ

The number of queries required to find the target concept is in:

$O(|C_T| \cdot (\log |X| + |\Gamma|))$

The number of queries required to converge is in:

F -

30

In practice?

Limitations:

- QUACQ needs more than 8000 queries to learn the Sudoku model
- Generating a query can be time-consuming

Need:

Reduce the dialogue with the user and the waiting time

How:

- Eliciting more information on why a complete instantiation is classified as negative by the user [MultiAcq, IJCAI16]
- Eliciting more information by asking complex queries to the user [ECAI14, ICTAI15, IJCAI16]
- Time-bounded query generator [T-QUACQ, CPAIOR'18]

ask(2, 8, 4, 2, 6, 5, 1, 6) = No

In practice?

Limitations:

- QUACQ needs more than 8000 queries to learn the Sudoku model
- Generating a query can be time-consuming

Need:

Reduce the dialogue with the user and the waiting time

How:

- Eliciting more information on why a complete instantiation is classified as negative by the user [MultiAcq, IJCAI16]
- Eliciting more information by asking complex queries to the user [ECAI14, ICTAI15, IJCAI16]
- Time-bounded query generator [T-QUACQ, CPAIOR'18]

Variables and Types

- A type is a subset of variables defined by the user as having a common property
- Example (School Timetabling Problem)

Variables and Types

- A type is a subset of variables defined by the user as having a common property
- Example (School Timetabling Problem)

Can C1 be generalized to all Teachers, Rooms and Courses?

In practice?

Limitations:

- QUACQ needs more than 8000 queries to learn the Sudoku model
- Generating a query can be time-consuming

Need:

Reduce the dialogue with the user and the waiting time

How:

- Eliciting more information on why a complete instantiation is classified as negative by the user [MultiAcq, IJCAI16]
- Eliciting more information by asking complex queries to the user [ECAI14, ICTAI15, IJCAI16]
- Time-bounded query generator [T-QUACQ, CPAIOR'18]

Conclusions

- Formal definition of Constraint Acquisition Problem
- Architectures for acquiring constraint networks

- **Future works:**
 - **Taxonomy of queries**
 - Constraint Acquisition toolbox

Constraint Acquisition

Nadjib Lazaar

U. Montpellier, France LIRMM - CNRS - COCONUT team

21-05-19 NordConsNet19 - SIMULA - Oslo

