Motivations

Problem \[\rightarrow\] CSP \[\rightarrow\] CP Solver

\[\rightarrow\] solution
Motivations

• **Question:** How does the user write down the constraints of a problem?
• **Limitations:** modelling constraint networks require a fair expertise
 [Freuder99, Frisch et al.05, Smith06]

• **Need:** Simple way to build constraint model ➔ Modeller-assistant
Motivations

- **Question:** How does the user write down the constraints of a problem?
- **Limitations:** modelling constraint networks require a fair expertise

 [Freuder99, Frisch et al.05, Smith06]

- **Need:** Simple way to build constraint model ➔ Modeller-assistant
- **How:** In a Machine Learning way (passive/active, offline/online, by reinforcement...)

Learning process

- Solutions
- Non-solutions

[Diagram showing a flow from Problem to Solution through CSP and learning process]
Motivations

- **Question:** How does the user write down the constraints of a problem?
- **Limitations:** modelling constraint networks require a fair expertise

 [Freuder99, Frisch et al.05, Smith06]

- **Need:** Simple way to build constraint model ➔ Modeller-assistant
- **How:** In a Machine Learning way (passive/active, offline/online, by reinforcement...)
Acquisition using standard ML

- **Empirical Model Learning** [Lombardi and Milano, AIJ17]
 - Extracting an Empirical Model using Neural Networks and Decision Trees
 - Empirical Model in terms of variables/constraints

- **Model Agnostic Solution of CSPs via Deep Learning: A preliminary**
 [Galassi et al., CPAIOR18]

- **Study Boundary estimation for constraint optimization problem** [Spieker and Gotlieb, ISMP18]
 - Learning boundaries for objective variables
 - Based on supervised learning (data curation, regression models)
Version Space Learning (Overview) [Mitchell82]

- Let \(X = x_1, \ldots, x_n \) a set of attributes of domains \(D = D_1, \ldots, D_n \)

- A concept is a Boolean function \(f : X \rightarrow \{0, 1\} \)
 - \(f(x_i) = 0 \) => \(x_i \) is a negative instance
 - \(f(x_j) = 1 \) => \(x_j \) is a positive instance

Given a set of hypothesis \(H \), any subset of \(H \) represents a version space

- A concept to learn is the set of positive instances that can be represented by a version space
Version Space Learning (Overview) [Mitchell82]

Most specific concept to learn:

\[f : (\forall x_i \in E^+ : f(x_i) = 1) \land (\forall x_i \in E^- : f(x_i) = 0) \]

\[f \equiv h_2 \land h_6 \land h_9 \]
Constraint Acquisition as Version Space Learning

Constraint Programming:

Constraint network
Constraint Acquisition Problem

Inputs:
- (X,D): Vocabulary
- \(\Gamma \): Constraint language
- \(B \): Bias (constraints/hypothesis)
- \(C_T \): Target Network (concept to learn)
- \((E^+,E^-) \): training set

Output:
- \(C_L \): Learned network such that:
Example

- \(\Gamma = \{<,=\} \)
- \(B = \{x_i < x_j, x_i = x_j, \forall i, j\} \)
- \(C_T = \{x_1 = x_3, x_1 < x_2\} \)
- \(C_L = \{x_1 = x_3, x_3 < x_2\} \)
Constraint Acquisition Problem

- Convergence Problem:
 - C_L agrees with E
 - For any other network’ $C' \subseteq B$
 agreeing with E, we have:

$$sol(C') = sol(C_L)$$

coNP-complete [Constraint Acquisition, AIJ17]
Convergence / Collapse states
Convergence / Collapse states
Acquisition using membership queries

- **CONACQ** [Bessiere et al. AIJ17]
 - SAT-Based constraint acquisition
 - Bidirectional search using Membership queries
 - Conacq1.0 (passive learning)
 - Conacq2.0 (active learning)

\[K = \left(\neg x_1 \wedge \neg x_2 \wedge \neg x_3 \right) \wedge \left(x_4 \vee x_5 \vee x_6 \vee x_7 \right) \ldots \]

Non-learnability using Membership queries [Constraint Acquisition, AIJ17]
Acquisition using complex queries

- **Matchmaker agents** [Freuder and Wallace wAAAI97]
- **Argument-Based CONACQ** [Friedrich et al.09]
- **ILP-Based Acquisition** [Lallouet et al. 10]
Structured problem acquisition

ModelSeeker [Beldiceanu and Simonis, CP11’12]

- A passive learning
- Based on global constraint catalogue (≈1000)
- Bottom-up search
- ModelSeeker learns constraints underlying the scheduling of the Bundesliga (the German Football Liga) from a single example schedule.
QUACQ: Quick Acquisition

- **QUACQ** [Bessiere et al. IJCAI13]
 - Active learning approach
 - Bidirectional search
 - But it can be top-down search if no positive example
 - Based on partial queries to elucidate the scope of the constraint to learn
 - Learnability using partial queries
ask(2, 8, 4, 2, 6, 5, 1, 6)
Partial Queries

ask(2, 8, 4, 2, 6, 5, 1, 6) = No
ask(2, 8, 4, 2, -, -, -, -) = No
Partial Queries

ask(2, 8, -, -, -, -, -, -) = Yes
Partial Queries

ask(2, 8, 4, -, -, -, -, -, -) = No
QUACQ: Quick Acquisition

yes
reduce(B)
ask(e)
Gen-query
QUACQ: Quick Acquisition

- yes
 - reduce(B)
- ask(e)
 - Gen-query
- No
 - partial-ask(e)
 - FindScope
QUACQ: Quick Acquisition
QUACQ: Quick Acquisition

- **ask(e)**
 - yes → **reduce(B)**
 - no → **partial-ask(e)**

- **Gen-query**

- **FindScope**

- **FindC**

- **Update(C_L)**
QUACQ: Quick Acquisition

Yes:
- reduce(B)
- Gen-query
- B=ø
- Update(C_L)

No:
- partial-ask(e)
- FindScope
- FindC
Algorithm 1: QUACQ: Acquiring a constraint network C_T with partial queries

1. $C_L \leftarrow \emptyset$;
2. while true do
3. if $\text{sol}(C_L) = \emptyset$ then return "collapse";
4. choose e in D^X accepted by C_L and rejected by B;
5. if $e = \text{nil}$ then return "convergence on C_L";
6. if $\text{ASK}(e) = \text{yes}$ then $B \leftarrow B \setminus \kappa_B(e)$;
7. else
8. $c \leftarrow \text{FindC}(e, \text{FindScope}(e, \emptyset, X, \text{false}))$;
9. if $c = \text{nil}$ then return "collapse";
10. else $C_L \leftarrow C_L \cup \{c\}$;
The number of queries required to find the target concept is in:

$$O(|C_T| \cdot (\log |X| + |\Gamma|))$$

The number of queries required to converge is in:

$$O(|B|)$$
In practice?

Limitations:

• QUACQ needs more than 8000 queries to learn the Sudoku model
• Generating a query can be time-consuming

Need:

• Reduce the dialogue with the user and the waiting time

How:

• Eliciting more information on why a complete instantiation is classified as negative by the user [MultiAcq, IJCAI16]
• Eliciting more information by asking complex queries to the user [ECAI14, ICTAI15, IJCAI16]
• Time-bounded query generator [T-QUACQ, CPAIOR’18]
Partial Queries

ask(2, 8, 4, 2, 6, 5, 1, 6) = No
In practice?

Limitations:
- QUACQ needs more than 8000 queries to learn the Sudoku model
- Generating a query can be time-consuming

Need:
- Reduce the dialogue with the user and the waiting time

How:
- Eliciting more information on why a complete instantiation is classified as negative by the user [MultiAcq, IJCAI16]
- Eliciting more information by asking complex queries to the user [ECAI14, ICTAI15, IJCAI16]
- Time-bounded query generator [T-QUACQ, CPAIOR’18]
Variables and Types

A type is a subset of variables defined by the user as having a common property.

Example (School Timetabling Problem)
A type is a subset of variables defined by the user as having a common property.

Example (School Timetabling Problem)

Can C1 be generalized to all Teachers, Rooms and Courses?
In practice?

Limitations:
- QUACQ needs more than 8000 queries to learn the Sudoku model
- Generating a query can be time-consuming

Need:
- Reduce the dialogue with the user and the waiting time

How:
- Eliciting more information on why a complete instantiation is classified as negative by the user [MultiAcq, IJCAI16]
- Eliciting more information by asking complex queries to the user [ECAI14, ICTAI15, IJCAI16]
- Time-bounded query generator [T-QUACQ, CPAIOR’18]
Conclusions

- Formal definition of Constraint Acquisition Problem
- Architectures for acquiring constraint networks

Future works:
- Taxonomy of queries
- Constraint Acquisition toolbox
Constraint Acquisition

Nadjib Lazaar

Thank you!!

U. Montpellier, France
LIRMM - CNRS - COCONUT team
21-05-19
NordConsNet19 - SIMULA - Oslo